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Abstract

Background: Diffusion weighted imaging (DWI) with intravoxel incoherent motion (IVIM) modelling can inform on
tissue perfusion without exogenous contrast administration. Dynamic-contrast-enhanced (DCE) MRI can also
characterise tissue perfusion, but requires a bolus injection of a Gadolinium-based contrast agent.
This study compares the use of DCE-MRI and IVIM-DWI methods in assessing response to anti-angiogenic treatment
in patients with colorectal liver metastases in a cohort with confirmed treatment response.

Methods: This prospective imaging study enrolled 25 participants with colorectal liver metastases to receive
Regorafenib treatment. A target metastasis > 2 cm in each patient was imaged before and at 15 days after
treatment on a 1.5T MR scanner using slice-matched IVIM-DWI and DCE-MRI protocols.
MRI data were motion-corrected and tumour volumes of interest drawn on b=900 s/mm2 diffusion-weighted
images were transferred to DCE-MRI data for further analysis. The median value of four IVIM-DWI parameters
[diffusion coefficient D (10−3 mm2/s), perfusion fraction f (ml/ml), pseudodiffusion coefficient D* (10−3 mm2/s), and
their product fD* (mm2/s)] and three DCE-MRI parameters [volume transfer constant Ktrans (min−1), enhancement
fraction EF (%), and their product KEF (min−1)] were recorded at each visit, before and after treatment.
Changes in pre- and post-treatment measurements of all MR parameters were assessed using Wilcoxon signed-rank
tests (P<0.05 was considered significant). DCE-MRI and IVIM-DWI parameter correlations were evaluated with
Spearman rank tests.
Functional MR parameters were also compared against Response Evaluation Criteria In Solid Tumours v.1.1 (RECIST)
evaluations.
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Results: Significant treatment-induced reductions of DCE-MRI parameters across the cohort were observed for EF
(91.2 to 50.8%, P<0.001), KEF (0.095 to 0.045 min−1, P<0.001) and Ktrans (0.109 to 0.078 min−1, P=0.002). For IVIM-DWI,
only D (a non-perfusion parameter) increased significantly post treatment (0.83 to 0.97 × 10−3 mm2/s, P<0.001),
while perfusion-related parameters showed no change. No strong correlations were found between DCE-MRI and
IVIM-DWI parameters. A moderate correlation was found, after treatment, between Ktrans and D* (r=0.60; P=0.002)
and fD* (r=0.67; P<0.001). When compared to RECIST v.1.1 evaluations, KEF and D correctly identified most clinical
responders, whilst non-responders were incorrectly identified.

Conclusion: IVIM-DWI perfusion-related parameters showed limited sensitivity to the anti-angiogenic effects of
Regorafenib treatment in colorectal liver metastases and showed low correlation with DCE-MRI parameters, despite
profound and significant post-treatment reductions in DCE-MRI measurements.

Trial registration: NCT03010722 clinicaltrials.gov; registration date 6th January 2015.

Keywords: Dynamic contrast enhanced MRI (DCE-MRI), Intravoxel incoherent motion diffusion weighted
imaging (IVIM-DWI), Perfusion, Colorectal liver metastasis, Clinical trial.

Background
Regorafenib (Stivarga®), a small molecule multiple kinase
inhibitor with action against pro-angiogenic and pro-
proliferative targets, has been shown to prolong disease
survival for colorectal cancer patients [1]. However,
treatment using Regorafenib is associated with side ef-
fects in up to 98% of patients [2]. Hence, early identifica-
tion of patients who are benefiting from treatment can
help to individualize treatment, by potentially terminat-
ing ineffective treatments and minimizing drug toxicity.
Functional MRI techniques, such as dynamic contrast en-

hanced (DCE)-MRI and diffusion weighted imaging (DWI),
provide information about perfusion and cellularity. DCE-
MRI can characterise tissue vascularisation [3, 4], but re-
quires repeated rapid image acquisition of the tumour, sus-
tained over a few minutes after bolus injection of a
Gadolinium-based contrast agent. The temporal evolution
of enhancement on T1-weighted imaging is used to model
and derive quantitative vascular parameters. Studies have
shown that DCE-MRI parameters can provide insights into
early therapeutic effects or disease outcome [5]. In colorec-
tal liver metastases treated with Regorafenib, an early re-
duction in KEF (product of transfer constant Ktrans and
enhancing fraction EF) value by >70% was associated with
better disease control [6].
Diffusion-weighted imaging provides insights into tis-

sue water mobility and does not require exogenous con-
trast injection. By performing DWI using multiple b-
values combined with intravoxel incoherent motion
(IVIM) modelling, tissue water diffusion is expected to
be separated from pseudo-diffusion that can reflect tis-
sue perfusion [7, 8]. IVIM-DWI perfusion measurements
can help characterization and assess response to antican-
cer treatments [9]. However, clinical IVIM-DWI studies
[10–12] in colorectal liver metastases have been incon-
clusive about the value of the perfusion-sensitive IVIM
parameters for assessing drug therapeutic effects. This

may be related to the fact that colorectal liver metastases
are predominantly hypovascular and their IVIM-DWI
derived parameters have poor measurement repeatability
[13], which can limit the sensitivity of the technique in
detecting vascular changes.
Previous studies compared measurements of vascular

parameters using DCE-MRI with IVIM-DWI in rectal
cancer [14, 15]. A similar assessment of the two tech-
niques in colorectal liver metastases will aid understand-
ing the relative merits of both techniques in their
deployment in clinical practice. Hence, the aim of this
study is to compare the use of DCE-MRI and IVIM-
DWI techniques in assessing the response to Regorafe-
nib treatment in colorectal liver metastases. Note that
this work follows up a clinical report of the efficacy of
drug treatment with Regorafenib [6]. In the present
study, we compare IVIM-DWI measurements (previ-
ously not reported) against DCE-MRI measurements.

Methods
Study population
The trial recruitment was approved by our institutional
review board (National Research Ethics Service, NRES
Committee London-Fulham; Research Ethics Committee
reference 14/LO/1812) and informed written consent
was obtained from each patient.
This prospective phase II study (NCT03010722 regis-

try number on clinicaltrials.gov) enrolled 25 patients
with colorectal liver metastases, between March 2015
and May 2016, to a single drug Regorafenib treatment.
The three inclusion criteria were: (1) patients at least
18y-old with a WHO performance status of 0-1 for
which all conventional treatments were exhausted;
(2) patients had metastatic disease amenable to biopsy
and repeat measurements with DCE-MRI; (3) patients
were confirmed to have a RAS-mutant cancer type. The
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patient cohort, including case exclusions, is presented in
Fig. 1.
In each patient, a target metastasis (>2 cm) was se-

lected to undergo DCE-MRI and IVIM-DWI before (day
-7 to 0) and at day 15 after treatment. Five additional pa-
tients with liver metastases were recruited (February to
June 2017) to assess same-day test-retest repeatability of
the IVIM-DWI technique used in the prospective study.

MR Image acquisition
All imaging was performed on a 1.5T MR scanner
(MAGNETOM Avanto, Siemens Healthcare, Erlangen,
Germany), see full parameters in Table 1. The IVIM-
DWI scans were performed prior to DCE-MRI studies
to avoid possible effects of gadolinium contrast on the
IVIM-DWI measurements.
IVIM-DWI protocol. Free-breathing coronal IVIM-

DWI was acquired using a 2D echo planar imaging se-
quence with a 3 direction scan trace method and 8 b-
values [range 0-900 s/mm2]. DWI for each gradient dir-
ection was obtained and 5 independent acquisitions (no
averaging) were acquired over 10 min.

DCE-MRI protocol. A standard dose of contrast agent
(Dotarem, 0.2 ml/kg) followed by 20 ml of saline were
delivered by an automatic power injector at 3 ml/s.
Breath-hold coronal DCE-MRI data were acquired using
a 3D spoiled gradient echo sequence (VIBE-volumetric
interpolated breath-hold examination) that matched the
field of view and resolution of IVIM-DWI. Dynamic
scans were preceded by a calibration scan with the same
parameters, but at a lower flip angle (2°) and with 7 av-
erages, to enable contrast quantification [16]. Patients
were imaged using a sequential breath-hold technique
optimised for liver lesions [17]: two imaging volumes
were acquired during each 6 s breath-hold, followed by a
6 s breathing gap; a total of 40 volumes were acquired
over 4 min.

MRI data processing
MRI data were motion-corrected (2D techniques, Matlab
2017a, see Supplementary material), and tumour vol-
umes of interest (VOI) were drawn by an experienced
radiologist on high-b-value IVIM-DW images (b900) for
analysis, see Fig. 2. The VOIs were transferred to the

Fig. 1 Flowchart of the MR cohort

Rata et al. Cancer Imaging           (2021) 21:67 Page 3 of 12



DCE-MR images for quantitative analysis. Voxel-wise
analysis of the delineated VOI was performed using an
in-house software designed for each imaging technique,
and median values of the parameters of interest for both
IVIM-DWI and DCE-MRI were reported before and
after treatment for every patient.
IVIM-DWI data. A model using a Markov random

field approach generated IVIM-DWI estimates using
a Matlab script (Matlab 2017a; see Supplementary
material). The four IVIM-DWI parameters were: dif-
fusion coefficient D, perfusion fraction f (proportion
of a voxel volume occupied by capillaries), pseudo-
diffusion coefficient D* (convective motion of blood
in vessel network), and their product fD*.
DCE-MRI data. The pharmacokinetic analysis used the

extended Kety/Tofts model [18, 19] in conjunction with

a cosine-based arterial input function model [20] derived
from population-averaged values [21] and was applied
using a software from [22].The following main DCE-MRI
parameters were reported: volume transfer constant be-
tween plasma and extracellular extravascular space (Ktrans)
and the enhancement fraction (EF). The EF was defined as
percentage of voxels within the VOI that enhance above
the noise floor. A voxel was considered to be enhanced if
its post-contrast signal intensity was at least one standard
deviation above the mean pre-contrast signal for a period
of 60 s after the arrival of contrast in the lesion.
Parameters were computed to account for additional

necrosis after treatment, which typically manifests by
non-enhancement. Two tumour-derived Ktrans estimates
were reported: the whole tumour Ktrans(all), and valid
voxels only Ktrans(nonzeros), i.e. excluding all non-

Table 1 MR parameters for the IVIM-DWI and DCE-MRI sequences.

MRI Parameters Liver tumours (n=25 patients)

IVIM-DWI DCE-MRI

Sequence 2D single shot echo planar imaging 3D gradient echo

Acquisition plane Coronal Coronal

Breathing mode Free breathing Breath holding

Total acquisition time [min:s] 10:25 04:18

Time per single acquisition [min:s] 02:05 04:18

Number of averages 5 1

Acquired voxel size [mm3] 3.1 × 3.1 × 5 3.1 × 3.1 × 5

Reconstructed voxel size [mm3] 1.56 × 1.56 × 5 1.56 × 1.56 × 5

Slice thickness [mm] 5 5

TR [ms] 5000 3

TE [ms] 60 0.89

Flip angle [˚] - 11

Slices per slab 20 14

Slice gap [mm] 0 0

Slice oversampling [%] - 14.3

Matrix (FE x PE) 128 × 128 128 × 128

FOV [mm2] 400 × 400 400 × 400

Dynamic measurements - 40

Breath holding (pause 6 s after dyn2, dyn4,etc.) no yes

Receiver bandwidth [Hz/Pixel] 1860 650

Parallel acquisition (GRAPPA)
(PE acceleration factor x reference lines)

2 × 30 2 × 24

Phase partial Fourier 7/8 no

Slice partial Fourier - 6/8

Fat suppression SPAIR none

8 b-values [s/mm2] 0, 20, 40, 60, 120, 240, 480, 900 -

Diffusion times [ms] δ = 14.6; Δ = 24 -

TR=repetition time; TE=echo time
FE=frequency encoding; PE=phase encoding; FOV=field of view
GRAPPA=GeneRalized Autocalibrating Partial Parallel Acquisition
SPAIR=SPectral Attenuated Inversion Recovery

Rata et al. Cancer Imaging           (2021) 21:67 Page 4 of 12



enhancing voxels. Potential change in the volume of en-
hancing tumour after treatment (such as new necrosis)
was accounted for by reporting a new parameter which
incorporates both effects: KEF= Ktrans(nonzeros) x EF
[23]. Note that this parameter is the product of the sum-
marized median values of its two components, and does
not rely on a direct voxel-wise approach.

Statistical analysis
Treatment-induced changes on all parameters were
assessed with Wilcoxon signed-rank tests as parameters
were not normally distributed. Correlations between
DCE-MRI (Ktrans, KEF) and IVIM-DWI (f, D*, fD*) pa-
rameters were assessed by Spearman rank tests. The
IVIM-DWI repeatability was assessed with Bland-

Altman analysis. For all analyses, a P-value of <0.05 was
deemed statistically significant.

Results
Patient demographics
All 25 study patients (16 men, 9 women; mean age
64.4 ±10.7 years) successfully completed all imaging
studies and their clinical characteristics are presented
in Table 2. Another 5 patients (3 men, 2 women;
mean age 61.0 ±11.6 years) underwent short term
test-retest repeatability studies for the IVIM-DWI
method only (Table 2).

DCE-MRI and IVIM-DWI assessment of treatment response
The treatment response of the whole study cohort, as
measured by DCE-MRI and IVIM-DWI, is shown in

Fig. 2 VOI-based data processing (example of one slice out of the 8 evaluated) for a 48 year old female patient with a lesion in segments 7/8 of the
liver. VOI was drawn on the highest-b-value image (a), then transferred to the DCE-MRI subtraction image (b). The subtraction image was calculated as
the difference between the dynamic image with peak enhancement within the liver parenchyma (dynamic 9/40) and the first pre-contrast image
(dynamic 1/40). The VOIs were used in conjunction with each of the computed maps to derive the median values of parameters of interest: D (c) and
Ktrans (d) are shown here. Note that Ktrans map is shown overlaid on the last dynamic image of the DCE-MRI acquisition (dynamic 40/40)
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Fig. 3 using box plots overlaid with ladder plots for indi-
vidual patients. Significant treatment-induced reductions
of the perfusion-related DCE-MRI parameters were ob-
served for EF (91.2% vs.50.8%, P<0.001), KEF (0.095 vs.

0.045, P<0.001) and Ktrans (0.109 vs. 0.078 min−1, P=
0.002). A typical example of MR parametric maps from
a 59 year-old man with liver metastasis is shown in Fig. 4,
demonstrating a decrease in Ktrans and EF after
treatment.
For IVIM-DWI, only the diffusion parameter, D, in-

creased significantly post treatment (0.83 vs.0.97 × 10−3

mm2/s, P<0.001), in keeping with reducing cellularity.
However, the perfusion-related parameter changes (f, D*
and fD*) did not reach statistical significance. The de-
tailed results including P-values of the pre/post-treat-
ment Wilcoxon test of all MR parameters are presented
in Table 3.

Correlation of DCE-MRI and IVIM-DWI parameters
Scatter plots for the IVIM-DWI perfusion parameters (D*,
f and fD*) versus the DCE-MRI parameter Ktrans are pre-
sented in Fig. 5. Spearman correlation tests found no
strong (i.e. correlation coefficient r>0.7) correlation be-
tween Ktrans and IVIM-DWI parameters. A moderate cor-
relation (0.5<r<0.7) was found, after treatment, between
Ktrans and two perfusion parameters: D* (r=0.60; P=0.002)
and fD* (r=0.67; P<0.001). No significant correlation was
found between f and Ktrans at any timepoint during
treatment.

Repeatability of IVIM-DWI parameters
Individual Bland Altman plots for each IVIM-DWI par-
ameter as derived from the five patient cohort are

Table 2 Clinical characteristics of patients for the two cohorts

Main cohort (N=25): phase II clinical trial patients; DCE-MRI vs.
IVIM-DWI

Disease liver metastases from colorectal cancer

Primary cancer colorectal (all patients)

Treatment oral anti-angiogenic drug (Regorafenib)
administered daily

Sex [Female/Male] 9/16

Age in years (mean ± SD;
range)

64.4 ± 10.7; 44 - 86

Lesion volume in mL (mean
± SD; range)

45.8 ± 60.1; 2.2 - 265.1

Repeatability cohort (N=5): clinical patients; IVIM-DWI

Disease liver metastases from gastrointestinal
cancer

Primary cancer 3 colorectal, 1 stomach, 1 caecal

Treatment not relevant

Sex [Female/Male] 2/3

Age in years (mean ± SD,
range)

61.0 ± 11.6; 50 - 80

Lesion volume in mL (mean
± SD, range)

91.9 ± 164.5; 4.1 - 385.6

SD=standard deviation

Fig. 3 Pre/post-treatment overlapped Ladder/Box plots of MR parameters from 25 liver metastases patients demonstrating significant response
for all DCE-MRI parameters and D, but no significance for the three other IVIM-DWI parameters. Wilcoxon P-values are listed within the header
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presented in Fig. 6. The IVIM-DWI parameter repeat-
ability was lowest for D (coefficient of variation CV=
2.9%), followed by f (CV=48%), D* (CV=60%) and fD*
(CV=117%). Full statistical results are presented in Table
3. The perfusion-sensitive parameters of colorectal liver
metastases were considerably less repeatable compared
with tissue diffusivity measurement (D).

Correlation of MR parameters and RECIST
Figure 7 presents waterfall plots of the four MR parame-
ters showing statistical significance in assessing early
tumour response at day 15 post-treatment: three DCE-
MRI parameters (Ktrans, EF and KEF) and the non-
perfusion D parameter derived from IVIM-DWI. Note
that the disease control rate, measured by Response

Fig. 4 Example MR parametric maps from a 59 year old male patient with liver metastasis before (top row) and after 15 days of treatment
(bottom row); coronal plane

Table 3 Median values and main statistics of the DCE-MRI and IVIM-DWI parameters (Wilcoxon test; paired t-test and Bland-Altman
analysis). Values with the # symbol were statistically significant at P<0.05.

Main cohort (n=25) Ktrans (nz) EF KEF D D* f fD*

Median value [Visit 1] 0.109 91.2 0.095 0.00083 0.0166 0.0947 0.0014

Median value [Visit 2] 0.078 50.8 0.045 0.00097 0.0095 0.1091 0.0011

P value (Wilcoxon signed-rank test) 0.002# <0.001# <0.001# <0.001# 0.14 0.43 0.09

IVIM Repeatability cohort (n=5) Ktrans(nz) EF KEF D D* f fD*

Mean value [Repeat 1] x x x 0.0012 0.0348 0.0885 0.0027

Mean value [Repeat 2] x x x 0.0012 0.0404 0.1065 0.0045

P value (paired t-test) 0.57 0.61 0.44 0.41

Bland-Altman tests

standard deviation (SD) 0.00003 0.022 0.047 0.004

mean bias -0.00001 0.006 0.018 0.002

coefficient of variation (CV) %; SD/mean 2.9 60 48 117

nz=nonzeros
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Evaluation Criteria In Solid Tumors v.1.1 (RECIST), was
obtained at a later timepoint (week 8 post-treatment)
and covered 21/25 patients as four patients were not
evaluated by RECIST. Out of the 21 patients with
RECIST v.1.1 evaluations available, KEF correctly identi-
fied 12/13 clinical responders and incorrectly identified
8/8 non-responders, while D correctly identified 11/13
responders and incorrectly identified 6/8 non-
responders.

Discussion
This prospective single-center study was performed in
25 patients with colorectal liver metastases treated with
single-agent Regorafenib (anti-angiogenic and anti-
proliferative effects). Across the cohort, there was a sig-
nificant response measured by DCE-MRI demonstrating
an overall decrease in the median Ktrans, EF and KEF
values after treatment. This early decrease of DCE-MRI
parameters was correlated, at later timepoints, with
standard clinical biomarkers, including the endothelial

marker CD31 which confirmed the anti-angiogenic ef-
fect of the drug in a smaller subcohort [6].
Additionally, the statistically significant functional MR

parameters (Ktrans, EF, KEF and D) showed a good cor-
relation with RECIST v.1.1 measurements (Fig. 7). Both
KEF and D parameters correctly identified most clinical
responders (12/13 and 11/13, respectively), whilst incor-
rectly classifying most non-responders as responders.
Note that MR measurements were performed 2 weeks
post treatment and the RECIST v.1.1 evaluation after 8
weeks. Such a discrepancy limits the interpretation of
these comparisons since the lesion behaviour over time
cannot be fully assessed (e.g. an early responder at 2
weeks might translate into a non-responder at a later
timepoint).
In this study, we investigated whether perfusion-

related IVIM-DWI effects mirror the perfusion effects
measured using DCE-MRI in a cohort treated uniformly
with a drug that has anti-angiogenic effects. To ensure
optimum comparison, both DCE-MRI and IVIM-DWI

Fig. 5 Scatter plots for IVIM-DWI perfusion parameters (D*, f and fD*) versus the DCE-MRI parameter (Ktrans) showing little correlation. Spearman’s
rank correlation coefficient r and its corresponding P-value are shown for each plot. Only the four cases within a box framed with a solid line (i.e.
D* and fD* versus Ktrans) were statistically significant. Pre- and post-treatment data from the main cohort of 25 patients with liver metastases
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data were motion corrected before method-specific ana-
lysis. Both DCE-MRI and IVIM-DWI data were acquired
in the coronal plane (where we expect the principle
source of motion that affects liver imaging to be
superior-inferior in the direction of respiratory motion)
and thus allowing our in-plane registration and motion
correction to minimize the effects of motion; see further
details in the Supplementary material.
Interestingly, the highly significant therapeutic effects

observed for DCE-MRI parameters such as Ktrans, EF
and KEF following Regorafenib treatment were not
matched by changes in the perfusion-related IVIM-DWI
parameters (f, D* or fD*; none reached significance). The
diffusion coefficient D, a non-perfusion IVIM-DWI par-
ameter, significantly increased by 17% post treatment
(P<0.001), suggesting a reduction in cellularity after
treatment. This increase in D was within the capability
of our measurement repeatability to confidently detect
it. Overall, these results suggest that a multiparametric
analysis based on the most sensitive MR parameters (the

3 DCE-MRI parameters and the D coefficient) might
yield an improved performance in assessing response to
anti-angiogenic treatment.
The highest correlation between DCE-MRI and IVIM-

DWI methods was moderate (r=0.67, P<0.001) and cor-
related Ktrans and fD* parameters, even though changes
in fD* failed to reach statistical significance when mea-
sured before and after treatment. The overall results
suggest that even though fD* may be related to Ktrans in
these patients, the DCE-MRI measurement is more sen-
sitive than IVIM-DWI for assessing treatment-induced
changes in tumour perfusion in colorectal liver metasta-
ses. This is further influenced by the fact that perfusion
sensitive IVIM-DWI parameters have relatively poor
measurement repeatability (i.e. coefficient of variance for
fD* was 117%). Such values were consistent with data
derived from larger cohorts reported in the past [13, 24].
This suggests that although IVIM-DWI has been applied
for assessment across the body, its role in assessing the
vascular properties of hypovascular disease may be

Fig. 6 Bland-Altman plots for each IVIM-DWI parameter presenting values for the mean bias (and its P value), upper and lower limits of
agreement and coefficient of variation. Data derived from the 5 patient repeatability cohort
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limited due to the combination of diminished sensitivity
and poor measurement repeatability.
Another factor to consider when applying IVIM-DWI

is that the technique does not measure perfusion in the
classical sense [25], even though a link between IVIM-
DWI parameters and conventional MR perfusion has
been hypothesized [26]. However, a few studies in the
liver found no correlation between DCE-MRI and IVIM-
DWI parameters in liver cirrhosis [27] or hepatocellular
carcinoma [28]. In another recent study, only a weak
correlation was observed between IVIM-DWI and en-
hancement ratio in hepatocellular carcinoma; neverthe-
less, DCE-MRI outperformed IVIM-DWI parameters for
the identification of necrosis [29].

In terms of clinical translation, DCE-MRI has already
been used to demonstrate the pharmacodynamic effects of
anti-angiogenic response of other drugs such as Bevaci-
zumb [23, 30] and Sorafenib [31], while the use of IVIM-
DWI remains limited to exploratory research. Moreover,
recommendations towards standardization of DCE-MRI in
the liver have been published recently [32], suggesting a
wider acceptance of the technique. A similar
standardization for IVIM-DWI is not currently available, al-
though [32] includes useful suggestions for DWI
standardization as well.
There are a few limitations to our study. First, although

we undertook a repeatability study for our IVIM-DWI
protocol, we did not perform this for our DCE-MRI

Fig. 7 Waterfall plots for the four most sensitive MR parameters: Ktrans (a), EF (b), KEF (b) and D (d) demonstrating a good identification of
responders when using KEF and D parameters. The percentage change (relative to baseline value) for each MR parameter was calculated at day
15 post-treatment (25 patients), while the RECIST was performed at week 8 (21 patients)
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protocol. The patients in this study were already subjected
to a significant number of interventions, and it was difficult
to justify undertaking a repeat baseline DCE-MRI study re-
quiring an additional injection of gadolinium contrast.
Nevertheless, the liver DCE-MRI protocol was the same as
in a previous DCE-MRI study (coronal liver acquisition; 13
patients; population-based arterial input function), where
the test-retest repeatability of DCE-MRI was characterised.
In that study, a CV of 7.5% was found for Ktrans [33], which
corresponds to limits of agreement of -19%, +23%, and we
expect similar repeatability values in this study. The change
in median Ktrans in our study cohort was 28%, and the indi-
vidual change in Ktrans in 15/25 (i.e. 60%) patients was in
excess of the previously reported limits of agreement, sug-
gesting a true measured effect.
Second, this was a study in a relatively small popula-

tion from a single centre. Multi-centre DCE-MRI studies
are challenging to perform as there are significant tech-
nical and operational challenges in undertaking such
studies. Nonetheless, with evolving techniques in acquir-
ing high-temporal resolution and high-spatial resolution
images of the liver in free-breathing, it is likely that fu-
ture DCE-MRI quantification may use semi-automatic
or automatic pipelines to allow DCE-MRI parameters to
be more widely evaluated in a multi-centre setting. Hav-
ing said that, in the context of a larger cohort, the
perfusion-related IVIM-DWI parameters could reach
statistical significance in assessing therapy response.

Conclusions
In conclusion, in our study of patients with colorectal
liver metastases, IVIM-DWI perfusion-related parame-
ters show limited sensitivity to the anti-angiogenic ef-
fects of Regorafenib treatment and showed low
correlation with DCE-MRI parameters, despite pro-
found and significant post-treatment reductions in
DCE-MRI measurements. As such, IVIM-DWI param-
eters are not currently recommended as an alternative
to contrast-based studies when assessing the changes
in the vascular properties of colorectal liver metasta-
ses in response to treatment with an anti-angiogenic
agent.
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